Transportation-information Inequalities for Markov Processes (ii) : Relations with Other Functional Inequalities

نویسندگان

  • ARNAUD GUILLIN
  • CHRISTIAN LÉONARD
  • FENG-YU WANG
  • LIMING WU
چکیده

We continue our investigation on the transportation-information inequalities WpI for a symmetric markov process, introduced and studied in [14]. We prove that WpI implies the usual transportation inequalities WpH, then the corresponding concentration inequalities for the invariant measure μ. We give also a direct proof that the spectral gap in the space of Lipschitz functions for a diffusion process implies W1I (a result due to [14]) and a Cheeger type’s isoperimetric inequality. Finally we exhibit relations between transportation-information inequalities and a family of functional inequalities (such as Φ-log Sobolev or Φ-Sobolev). keywords: Wasserstein distance; entropy; Fisher information; transport-information inequality; deviation inequality. MSC 2000: 60E15, 60K35; 60G60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-sobolev, Isoperimetry and Transport Inequalities on Graphs

In this paper, we study some functional inequalities (such as Poincaré inequalities, logarithmic Sobolev inequalities, generalized Cheeger isoperimetric inequalities, transportation-information inequalities and transportation-entropy inequalities) for reversible nearest-neighbor Markov processes on a connected finite graph by means of (random) path method. We provide estimates of the involved c...

متن کامل

Logarithmic Sobolev, Isoperimetry and Transport Inequalities on Graphs

In this paper, we study some functional inequalities (such as Poincaré inequality, logarithmic Sobolev inequality, generalized Cheeger isoperimetric inequality, transportation-information inequality and transportation-entropy inequality) for reversible nearest-neighbor Markov processes on connected finite graphs by means of (random) path method. We provide estimates of the involved constants.

متن کامل

Bernstein type’s concentration inequalities for symmetric Markov processes

Using the method of transportation-information inequality introduced in [28], we establish Bernstein type’s concentration inequalities for empirical means 1 t ∫ t 0 g(Xs)ds where g is a unbounded observable of the symmetric Markov process (Xt). Three approaches are proposed : functional inequalities approach ; Lyapunov function method ; and an approach through the Lipschitzian norm of the solut...

متن کامل

Transportation-information inequalities for Markov processes

In this paper, one investigates the following type of transportation-information TcI inequalities: α(Tc(ν, μ)) ≤ I(ν|μ) for all probability measures ν on some metric space (X , d), where μ is a given probability measure, Tc(ν, μ) is the transportation cost from ν to μ with respect to some cost function c(x, y) on X , I(ν|μ) is the FisherDonsker-Varadhan information of ν with respect to μ and α ...

متن کامل

Some Remarks on Transportation Cost and Related Inequalities

We discuss transportation cost inequalities for uniform measures on convex bodies, and connections with other geometric and functional inequalities. In particular, we show how transportation inequalities can be applied to the slicing problem, and give a new log-Sobolev-type inequality for bounded domains in Rn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007